On the classification of Regular Lie groupoids

نویسنده

  • I. Moerdijk
چکیده

We observe that any regular Lie groupoid G over an manifold M fits into an extension K → G → E of a foliation groupoid E by a bundle of connected Lie groups K. If F is the foliation on M given by the orbits of E and T is a complete transversal to F , this extension restricts to T , as an extension KT → GT → ET of an étale groupoid ET by a bundle of connected groups KT . We break up the classification into two parts. On the one hand, we classify the latter extensions of étale groupoids by (nonabelian) cohomology classes in a new Čech cohomology of étale groupoids. On the other hand, givenK and E and an extension KT → GT → ET over T , we present a cohomological obstruction to the problem of whether this is the restriction of an extension K → G → E over M ; if this obstruction vanishes, all extensions K → G → E over M which restrict to a given extension over the transversal together form a principal bundle over a “group” of bitorsors under K.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Ideal Elements in Poe-AG-groupoid

In this paper we introduce the concept of ideal elements in poe-AG-groupoid and give some characterizations and properties of their ideal elements. So we consider some results concerning ideals in poe-semigroups and investigate them in poe-AG-groupoids. Also, the class of ideal elements of poe-AG-groupoids are studied, certain intrinsic and basic properties of poe-AG-groupoids including: ideal,...

متن کامل

Lie local subgroupoids and their holonomy and monodromy Lie groupoids

The notion of local equivalence relation on a topological space is generalized to that of local subgroupoid. The main result is the construction of the holonomy and monodromy groupoids of certain Lie local subgroupoids, and the formulation of a monodromy principle on the extendability of local Lie morphisms.  2001 Elsevier Science B.V. All rights reserved. AMS classification: 58H05; 22A22; 18F20

متن کامل

Integration of Lie algebroid comorphisms

We show that the path construction integration of Lie algebroids by Lie groupoids is an actual equivalence from the of integrable Lie algebroids and complete Lie algebroid comorphisms to the of source 1-connected Lie groupoids and Lie groupoid comorphisms. This allows us to construct an actual symplectization functor in Poisson geometry. We include examples to show that the integrability of com...

متن کامل

ar X iv : 0 90 2 . 29 25 v 1 [ m at h . G T ] 1 7 Fe b 20 09 COVERINGS AND ACTIONS OF STRUCTURED LIE GROUPOIDS

In this work we deal with coverings and actions of Lie groupgroupoids being a sort of the structured Lie groupoids. Firstly, we define an action of a Lie group-groupoid on some Lie group and the smooth coverings of Lie group-groupoids. Later, we show the equivalence of the category of smooth actions of Lie group-groupoids on Lie groups and the category of smooth coverings of Lie group-groupoids.

متن کامل

Twisted Equivariant K-theory, Groupoids and Proper Actions

In this paper we define twisted equivariantK-theory for actions of Lie groupoids. For a Bredon-compatible Lie groupoid G, this defines a periodic cohomology theory on the category of finite G-CW-complexes with G-stable projective bundles. A classification of these bundles is shown. We also obtain a completion theorem and apply these results to proper actions of groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002